If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+9b-14=6b
We move all terms to the left:
b^2+9b-14-(6b)=0
We add all the numbers together, and all the variables
b^2+3b-14=0
a = 1; b = 3; c = -14;
Δ = b2-4ac
Δ = 32-4·1·(-14)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{65}}{2*1}=\frac{-3-\sqrt{65}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{65}}{2*1}=\frac{-3+\sqrt{65}}{2} $
| 6+4p=18 | | 50=6x+5 | | 5x-3+x=9 | | 16w-8w=32 | | 48+7w=13w | | 9.8z-11.06=11.7z+18.39 | | x+13=1-19 | | 7/5x=1/10-3/2x | | 8.9d-18.22=8.3d-17.12-4.9d | | 3(3z−6)=3(3z−6)= 00 | | x−4.8=6.1 | | 6(x+2)=78 | | (3x+47)+(6x-25)=0 | | x+0.06x=515 | | 6.5x=73.125 | | -7+x/2=-10 | | 6x-25=0 | | 2b-5=-39 | | 5x4=2x+20 | | (10d-9)+1=0 | | -3k-89=22 | | 6n^2+4n-1=0 | | 16y-21=19 | | -3(5r-9)=-23-4r | | (x+7)^=81 | | 4(2z−5)= −4−4 | | g/6+12=21 | | -9x+23=86 | | -9(w+4)=-2w+6 | | x+7^=81 | | 3r-r=-16r-48-12r+-6 | | 9x-7=-88 |